Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.837
Filtrar
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38572735

RESUMO

Many studies indicate a broad role of various classes of GABAergic interneurons in the processes related to learning. However, little is known about how the learning process affects intrinsic excitability of specific classes of interneurons in the neocortex. To determine this, we employed a simple model of conditional learning in mice where vibrissae stimulation was used as a conditioned stimulus and a tail shock as an unconditioned one. In vitro whole-cell patch-clamp recordings showed an increase in intrinsic excitability of low-threshold spiking somatostatin-expressing interneurons (SST-INs) in layer 4 (L4) of the somatosensory (barrel) cortex after the conditioning paradigm. In contrast, pseudoconditioning reduced intrinsic excitability of SST-LTS, parvalbumin-expressing interneurons (PV-INs), and vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) with accommodating pattern in L4 of the barrel cortex. In general, increased intrinsic excitability was accompanied by narrowing of action potentials (APs), whereas decreased intrinsic excitability coincided with AP broadening. Altogether, these results show that both conditioning and pseudoconditioning lead to plastic changes in intrinsic excitability of GABAergic interneurons in a cell-specific manner. In this way, changes in intrinsic excitability can be perceived as a common mechanism of learning-induced plasticity in the GABAergic system.


Assuntos
Neocórtex , Camundongos , Animais , Neocórtex/metabolismo , Interneurônios/fisiologia , Aprendizagem/fisiologia , Condicionamento Clássico/fisiologia , Parvalbuminas/metabolismo
2.
Nat Commun ; 15(1): 3468, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658571

RESUMO

Metabolism has recently emerged as a major target of genes implicated in the evolutionary expansion of human neocortex. One such gene is the human-specific gene ARHGAP11B. During human neocortex development, ARHGAP11B increases the abundance of basal radial glia, key progenitors for neocortex expansion, by stimulating glutaminolysis (glutamine-to-glutamate-to-alpha-ketoglutarate) in mitochondria. Here we show that the ape-specific protein GLUD2 (glutamate dehydrogenase 2), which also operates in mitochondria and converts glutamate-to-αKG, enhances ARHGAP11B's ability to increase basal radial glia abundance. ARHGAP11B + GLUD2 double-transgenic bRG show increased production of aspartate, a metabolite essential for cell proliferation, from glutamate via alpha-ketoglutarate and the TCA cycle. Hence, during human evolution, a human-specific gene exploited the existence of another gene that emerged during ape evolution, to increase, via concerted changes in metabolism, progenitor abundance and neocortex size.


Assuntos
Proteínas Ativadoras de GTPase , Glutamato Desidrogenase , Neocórtex , Neocórtex/metabolismo , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Neocórtex/citologia , Humanos , Animais , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Ácidos Cetoglutáricos/metabolismo , Neuroglia/metabolismo , Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Camundongos , Ciclo do Ácido Cítrico/genética , Feminino
3.
J Alzheimers Dis ; 98(4): 1391-1401, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38552111

RESUMO

Background: Deposits of amyloid-ß (Aß) appear early in Alzheimer's disease (AD). Objective: The aim of the present study was to compare the presence of cortical and subcortical Aß in early AD using positron emission tomography (PET). Methods: Eight cognitively unimpaired (CU) subjects, 8 with mild cognitive impairment (MCI) and 8 with mild AD were examined with PET and [11C]AZD2184. A data driven cut-point for Aß positivity was defined by Gaussian mixture model of isocortex binding potential (BPND) values. Results: Sixteen subjects (3 CU, 5 MCI and 8 AD) were Aß-positive. BPND was lower in subcortical and allocortical regions compared to isocortex. Fifteen of the 16 Aß-positive subjects displayed Aß binding in striatum, 14 in thalamus and 10 in allocortical regions. Conclusions: Aß deposits appear to be widespread in early AD. It cannot be excluded that deposits appear simultaneously throughout the whole brain which has implications for improved diagnostics and disease monitoring.


Assuntos
Doença de Alzheimer , Aminopiridinas , Benzotiazóis , Disfunção Cognitiva , Neocórtex , Humanos , Doença de Alzheimer/metabolismo , Radioisótopos de Carbono , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Neocórtex/metabolismo
4.
EMBO J ; 43(8): 1388-1419, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514807

RESUMO

Neocortex expansion during evolution is linked to higher numbers of neurons, which are thought to result from increased proliferative capacity and neurogenic potential of basal progenitor cells during development. Here, we show that EREG, encoding the growth factor EPIREGULIN, is expressed in the human developing neocortex and in gorilla cerebral organoids, but not in the mouse neocortex. Addition of EPIREGULIN to the mouse neocortex increases proliferation of basal progenitor cells, whereas EREG ablation in human cortical organoids reduces proliferation in the subventricular zone. Treatment of cortical organoids with EPIREGULIN promotes a further increase in proliferation of gorilla but not of human basal progenitor cells. EPIREGULIN competes with the epidermal growth factor (EGF) to promote proliferation, and inhibition of the EGF receptor abrogates the EPIREGULIN-mediated increase in basal progenitor cells. Finally, we identify putative cis-regulatory elements that may contribute to the observed inter-species differences in EREG expression. Our findings suggest that species-specific regulation of EPIREGULIN expression may contribute to the increased neocortex size of primates by providing a tunable pro-proliferative signal to basal progenitor cells in the subventricular zone.


Assuntos
Epirregulina , Neocórtex , Animais , Humanos , Camundongos , Proliferação de Células , Epirregulina/genética , Epirregulina/metabolismo , Gorilla gorilla/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neocórtex/citologia , Neocórtex/metabolismo , Primatas/fisiologia
5.
Epilepsy Res ; 201: 107337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461594

RESUMO

Post traumatic epilepsy (PTE) is a treatment-resistant consequence of traumatic brain injury (TBI). Recently, it has been revealed that epileptiform activity in acute chemoconvulsant seizure models is accompanied by transient shrinkages of extracellular space (ECS) called rapid volume pulsations (RVPs). Shrinkage of the ECS surrounding neurons and glia may contribute to ictogenic hyperexcitability and hypersynchrony during the chronic phase of TBI. Here, we identify the phenomenon of RVPs occurring spontaneously in rat neocortex at ≥ 3 weeks after injury in the controlled cortical impact (CCI) model for PTE. We further report that blocking the electrogenic action of the astrocytic cotransporter NBCe1 with 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) eliminates both RVPs and epileptiform activity in ex-vivo CCI neocortical brain slices. We conclude that NBCe1-mediated extracellular volume shrinkage may represent a new target for therapeutic intervention in PTE.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Neocórtex , Ratos , Animais , Simportadores de Sódio-Bicarbonato/metabolismo , Espaço Extracelular/metabolismo , Neocórtex/metabolismo
6.
J Physiol Sci ; 74(1): 18, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491428

RESUMO

The olfactory bulb receives cholinergic basal forebrain inputs as does the neocortex. With a focus on nicotinic acetylcholine receptors (nAChRs), this review article provides an overview and discussion of the following findings: (1) the nAChRs-mediated regulation of regional blood flow in the neocortex and olfactory bulb, (2) the nAChR subtypes that mediate their responses, and (3) their activity in old rats. The activation of the α4ß2-like subtype of nAChRs produces vasodilation in the neocortex, and potentiates olfactory bulb vasodilation induced by olfactory stimulation. The nAChR activity producing neocortical vasodilation was similarly maintained in 2-year-old rats as in adult rats, but was clearly reduced in 3-year-old rats. In contrast, nAChR activity in the olfactory bulb was reduced already in 2-year-old rats. Thus, age-related impairment of α4ß2-like nAChR function may occur earlier in the olfactory bulb than in the neocortex. Given the findings, the vasodilation induced by α4ß2-like nAChR activation may be beneficial for neuroprotection in the neocortex and the olfactory bulb.


Assuntos
Neocórtex , Receptores Nicotínicos , Ratos , Animais , Nicotina/farmacologia , Bulbo Olfatório/metabolismo , Receptores Nicotínicos/metabolismo , Colinérgicos , Neocórtex/metabolismo
7.
Cell Rep Methods ; 4(3): 100738, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38508188

RESUMO

Spatially resolved epigenomic profiling is critical for understanding biology in the mammalian brain. Single-cell spatial epigenomic assays were developed recently for this purpose, but they remain costly and labor intensive for examining brain tissues across substantial dimensions and surveying a collection of brain samples. Here, we demonstrate an approach, epigenomic tomography, that maps spatial epigenomes of mouse brain at the scale of centimeters. We individually profiled neuronal and glial fractions of mouse neocortex slices with 0.5 mm thickness. Tri-methylation of histone 3 at lysine 27 (H3K27me3) or acetylation of histone 3 at lysine 27 (H3K27ac) features across these slices were grouped into clusters based on their spatial variation patterns to form epigenomic brain maps. As a proof of principle, our approach reveals striking dynamics in the frontal cortex due to kainic-acid-induced seizure, linked with transmembrane ion transporters, exocytosis of synaptic vesicles, and secretion of neurotransmitters. Epigenomic tomography provides a powerful and cost-effective tool for characterizing brain disorders based on the spatial epigenome.


Assuntos
Cromatina , Neocórtex , Camundongos , Animais , Histonas/genética , Epigenômica/métodos , Lisina , Neocórtex/metabolismo , Mamíferos/metabolismo
8.
Neurochem Res ; 49(5): 1347-1358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353896

RESUMO

Previously, we reported that epidermal growth factor (EGF) suppresses GABAergic neuronal development in the rodent cortex. Parvalbumin-positive GABAergic neurons (PV neurons) have a unique extracellular structure, perineuronal nets (PNNs). PNNs are formed during the development of PV neurons and are mainly formed from chondroitin sulfate (CS) proteoglycans (CSPGs). We examined the effect of EGF on CSPG production and PNN formation as a potential molecular mechanism for the inhibition of inhibiting GABAergic neuronal development by EGF. In EGF-overexpressing transgenic (EGF-Tg) mice, the number of PNN-positive PV neurons was decreased in the cortex compared with that in wild-type mice, as in our previous report. The amount of CS and neurocan was also lower in the cortex of EGF-Tg mice, with a similar decrease observed in EGF-treated cultured cortical neurons. PD153035, an EGF receptor (ErbB1) kinase inhibitor, prevented those mentioned above excess EGF-induced reduction in PNN. We explored the molecular mechanism underlying the effect of EGF on PNNs using fluorescent substrates for matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). EGF increased the enzyme activity of MMPs and ADAMs in cultured neurons. These enzyme activities were also increased in the EGF-Tg mice cortex. GM6001, a broad inhibitor of MMPs and ADAMs, also blocked EGF-induced PNN reductions. Therefore, EGF/EGF receptor signals may regulate PNN formation in the developing cortex.


Assuntos
Fator de Crescimento Epidérmico , Neurônios GABAérgicos , Neocórtex , Animais , Camundongos , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Matriz Extracelular/metabolismo , Neurônios GABAérgicos/metabolismo , Metaloproteinases da Matriz/metabolismo , Neocórtex/metabolismo , Parvalbuminas/metabolismo , Roedores/metabolismo
9.
Neuroscience ; 544: 28-38, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38423162

RESUMO

Our previous study revealed that acupuncture may exhibit therapeutic effects on Alzheimer's disease (AD) through the activation of metabolism in memory-related brain regions. However, the underlying functional mechanism remains poorly understood and warrants further investigation. In this study, we used resting-state functional magnetic resonance imaging (rsfMRI) to explore the potential effect of electroacupuncture (EA) on the 5xFAD mouse model of AD. We found that the EA group exhibited significant improvements in the number of platforms crossed and the time spent in the target quadrant when compared with the Model group (p < 0.05). The functional connectivity (FC) of left hippocampus (Hip) was enhanced significantly among 12 regions of interest (ROIs) in the EA group (p < 0.05). Based on the left Hip as the seed point, the rsfMRI analysis of the entire brain revealed increased FC between the limbic system and the neocortex in the 5xFAD mice after EA treatment. Additionally, the expression of amyloid-ß(Aß) protein and deposition in the Hip showed a downward trend in the EA group compared to the Model group (p < 0.05). In conclusion, our findings indicate that EA treatment can improve the learning and memory abilities and inhibit the expression of Aß protein and deposition of 5xFAD mice. This improvement may be attributed to the enhancement of the resting-state functional activity and connectivity within the limbic-neocortical neural circuit, which are crucial for cognition, motor function, as well as spatial learning and memory abilities in AD mice.


Assuntos
Doença de Alzheimer , Eletroacupuntura , Neocórtex , Camundongos , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Eletroacupuntura/métodos , Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Neocórtex/diagnóstico por imagem , Neocórtex/metabolismo , Aprendizagem Espacial , Modelos Animais de Doenças , Camundongos Transgênicos
10.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38369736

RESUMO

The generation of neurons in the developing neocortex is a major determinant of neocortex size. Crucially, the increase in cortical neuron numbers in the primate lineage, notably in the upper-layer neurons, contributes to increased cognitive abilities. Here, we review major evolutionary changes affecting the apical progenitors in the ventricular zone and focus on the key germinal zone constituting the foundation of neocortical neurogenesis in primates, the outer subventricular zone (OSVZ). We summarize characteristic features of the OSVZ and its key stem cell type, the basal (or outer) radial glia. Next, we concentrate on primate-specific and human-specific genes, expressed in OSVZ-progenitors, the ability of which to amplify these progenitors by targeting the regulation of the cell cycle ultimately underlies the evolutionary increase in upper-layer neurons. Finally, we address likely differences in neocortical development between present-day humans and Neanderthals that are based on human-specific amino acid substitutions in proteins operating in cortical progenitors.


Assuntos
Neocórtex , Neuroglia , Animais , Humanos , Neuroglia/metabolismo , Neocórtex/metabolismo , Neurônios/metabolismo , Células-Tronco , Primatas/genética , Neurogênese/genética
11.
Neuron ; 112(7): 1133-1149.e6, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38290518

RESUMO

Dysfunction in sodium channels and their ankyrin scaffolding partners have both been implicated in neurodevelopmental disorders, including autism spectrum disorder (ASD). In particular, the genes SCN2A, which encodes the sodium channel NaV1.2, and ANK2, which encodes ankyrin-B, have strong ASD association. Recent studies indicate that ASD-associated haploinsufficiency in Scn2a impairs dendritic excitability and synaptic function in neocortical pyramidal cells, but how NaV1.2 is anchored within dendritic regions is unknown. Here, we show that ankyrin-B is essential for scaffolding NaV1.2 to the dendritic membrane of mouse neocortical neurons and that haploinsufficiency of Ank2 phenocopies intrinsic dendritic excitability and synaptic deficits observed in Scn2a+/- conditions. These results establish a direct, convergent link between two major ASD risk genes and reinforce an emerging framework suggesting that neocortical pyramidal cell dendritic dysfunction can contribute to neurodevelopmental disorder pathophysiology.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Neocórtex , Animais , Camundongos , Anquirinas/genética , Anquirinas/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Dendritos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Neocórtex/metabolismo , Células Piramidais/fisiologia
12.
Dev Cell ; 59(4): 482-495.e6, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38272027

RESUMO

Mutations or dysregulation of nucleoporins (Nups) are strongly associated with neural developmental diseases, yet the underlying mechanisms remain poorly understood. Here, we show that depletion of Nup Seh1 in radial glial progenitors results in defective neural progenitor proliferation and differentiation that ultimately manifests in impaired neurogenesis and microcephaly. This loss of stem cell proliferation is not associated with defects in the nucleocytoplasmic transport. Rather, transcriptome analysis showed that ablation of Seh1 in neural stem cells derepresses the expression of p21, and knockdown of p21 partially restored self-renewal capacity. Mechanistically, Seh1 cooperates with the NuRD transcription repressor complex at the nuclear periphery to regulate p21 expression. Together, these findings identified that Nups regulate brain development by exerting a chromatin-associated role and affecting neural stem cell proliferation.


Assuntos
Neocórtex , Células-Tronco Neurais , Animais , Camundongos , Diferenciação Celular , Expressão Gênica , Neocórtex/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
13.
ACS Chem Neurosci ; 15(3): 456-461, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38251903

RESUMO

The recent development of genetically encoded fluorescent neurotransmitter biosensors has opened the door to recording serotonin (5-hydroxytryptamine, 5-HT) signaling dynamics with high temporal and spatial resolution in vivo. While this represents a significant step forward for serotonin research, the utility of available 5-HT biosensors remains to be fully established under diverse in vivo conditions. Here, we used two-photon microscopy in awake mice to examine the effectiveness of specific 5-HT biosensors for monitoring 5-HT dynamics in somatosensory cortex. Initial experiments found that whisker stimulation evoked a striking change in 5-HT biosensor signal. However, similar changes were observed in controls expressing green fluorescent protein, suggesting a potential hemodynamic artifact. Subsequent use of a second control fluorophore with emission peaks separated from the 5-HT biosensor revealed a reproducible, stimulus-locked increase in 5-HT signal. Our data highlight the promise of 5-HT biosensors for in vivo application, provided measurements are carried out with appropriate optical controls.


Assuntos
Neocórtex , Serotonina , Camundongos , Animais , Serotonina/metabolismo , Microscopia , Neocórtex/metabolismo , Transdução de Sinais , Neurotransmissores/metabolismo , Mamíferos/metabolismo
14.
J Comp Neurol ; 532(2): e25576, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38189676

RESUMO

In this review, we focus on human-specific features of neocortical neurogenesis in development and evolution. Two distinct topics will be addressed. In the first section, we discuss the expansion of the neocortex during human evolution and concentrate on the human-specific gene ARHGAP11B. We review the ability of ARHGAP11B to amplify basal progenitors and to expand a primate neocortex. We discuss the contribution of ARHGAP11B to neocortex expansion during human evolution and its potential implications for neurodevelopmental disorders and brain tumors. We then review the action of ARHGAP11B in mitochondria as a regulator of basal progenitor metabolism, and how it promotes glutaminolysis and basal progenitor proliferation. Finally, we discuss the increase in cognitive performance due to the ARHGAP11B-induced neocortical expansion. In the second section, we focus on neocortical development in modern humans versus Neanderthals. Specifically, we discuss two recent findings pointing to differences in neocortical neurogenesis between these two hominins that are due to a small number of amino acid substitutions in certain key proteins. One set of such proteins are the kinetochore-associated proteins KIF18a and KNL1, where three modern human-specific amino acid substitutions underlie the prolongation of metaphase during apical progenitor mitosis. This prolongation in turn is associated with an increased fidelity of chromosome segregation to the apical progenitor progeny during modern human neocortical development, with implications for the proper formation of radial units. Another such key protein is transketolase-like 1 (TKTL1), where a single modern human-specific amino acid substitution endows TKTL1 with the ability to amplify basal radial glia, resulting in an increase in upper-layer neuron generation. TKTL1's ability is based on its action in the pentose phosphate pathway, resulting in increased fatty acid synthesis. The data imply greater neurogenesis during neocortical development in modern humans than Neanderthals due to TKTL1, in particular in the developing frontal lobe.


Assuntos
Homem de Neandertal , Neocórtex , Células-Tronco Neurais , Animais , Humanos , Células-Tronco Neurais/metabolismo , Homem de Neandertal/metabolismo , Células Ependimogliais/metabolismo , Neocórtex/metabolismo , Neurogênese/fisiologia , Transcetolase/metabolismo , Proteínas Ativadoras de GTPase/metabolismo
15.
Anat Sci Int ; 99(1): 17-33, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37837522

RESUMO

Brain computation relies on the neural networks. Neurons extend the neurites such as dendrites and axons, and the contacts of these neurites that form chemical synapses are the biological basis of signal transmissions in the central nervous system. Individual neuronal outputs can influence the other neurons within the range of the axonal spread, while the activities of single neurons can be affected by the afferents in their somatodendritic fields. The morphological profile, therefore, binds the functional role each neuron can play. In addition, synaptic connectivity among neurons displays preference based on the characteristics of presynaptic and postsynaptic neurons. Here, the author reviews the "spatial" and "temporal" connection selectivity in the neocortex. The histological description of the neocortical circuitry depends primarily on the classification of cell types, and the development of gene engineering techniques allows the cell type-specific visualization of dendrites and axons as well as somata. Using genetic labeling of particular cell populations combined with immunohistochemistry and imaging at a subcellular spatial resolution, we revealed the "spatial selectivity" of cortical wirings in which synapses are non-uniformly distributed on the subcellular somatodendritic domains in a presynaptic cell type-specific manner. In addition, cortical synaptic dynamics in learning exhibit presynaptic cell type-dependent "temporal selectivity": corticocortical synapses appear only transiently during the learning phase, while learning-induced new thalamocortical synapses persist, indicating that distinct circuits may supervise learning-specific ephemeral synapse and memory-specific immortal synapse formation. The selectivity of spatial configuration and temporal reconfiguration in the neural circuitry may govern diverse functions in the neocortex.


Assuntos
Neocórtex , Neocórtex/metabolismo , Neurônios/metabolismo , Sinapses/fisiologia , Axônios , Aprendizagem
16.
Dev Cell ; 59(1): 64-78.e5, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38103552

RESUMO

Mammalian neocortex formation follows a stereotypical pattern wherein the self-renew and differentiation of neural stem cells are coordinated with diverse organelle dynamics. However, the role of lysosomes in brain development has long been overlooked. Here, we demonstrate the highly dynamic lysosomal quantities, types, and localizations in developing brain. We observed asymmetric endolysosome inheritance during radial glial cell (RGC) division and the increased autolysosomes within intermediate progenitor cells (IPs) and newborn neurons. Disruption of lysosomal function shortens the S phase of the cell cycle and promotes RGC differentiation. Mechanistically, we revealed a post-transcriptional regulation governing ribosome homeostasis and cell-cycle progression through differential lysosomal activity modulation. In the human forebrain organoid, lysosomal dynamics are conserved; specifically, during the mitosis of outer subventricular zone RGCs (oRGs), lysosomes are inherited by the progeny without basal process. Together, our results identify the critical role of lysosomal dynamics in regulating mouse and human brain development.


Assuntos
Neocórtex , Células-Tronco Neurais , Animais , Camundongos , Humanos , Neurônios/metabolismo , Neurogênese/fisiologia , Mitose , Neocórtex/metabolismo , Mamíferos , Lisossomos
17.
J Nucl Med ; 65(2): 320-326, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38124218

RESUMO

Portable, cost-effective PET cameras can radically expand the applicability of PET. We present here a within-participant comparison of fully quantified [18F]FDG dynamic scans in healthy volunteers using the standard Biograph mCT scanner and portable CerePET scanner. Methods: Each of 20 healthy volunteers underwent dynamic [18F]FDG imaging with both scanners (1-154 d apart) and concurrent arterial blood sampling. Tracer SUV, net influx rate (Ki), and the corresponding cerebral metabolic rate of glucose (CMRglu) were quantified at regional and voxel levels. Results: At the regional level, CerePET outcome measure estimates within participants robustly correlated with Biograph mCT estimates in the neocortex, wherein the average Pearson correlation coefficients across participants ± SD were 0.83 ± 0.07 (SUV) and 0.85 ± 0.08 (Ki and CMRglu). There was also strong agreement between CerePET and Biograph mCT estimates, wherein the average regression slopes across participants were 0.84 ± 0.17 (SUV), 0.83 ± 0.17 (Ki), and 0.85 ± 0.18 (CMRglu). There was similar bias across participants but higher correlation and less variability in subcortical regions than in cortical regions. Pearson correlation coefficients for subcortical regions equaled 0.97 ± 0.02 (SUV) and 0.97 ± 0.03 (Ki and CMRglu), and average regression slopes equaled 0.79 ± 0.14 (SUV), 0.83 ± 0.11 (Ki), and 0.86 ± 0.11 (CMRglu). In voxelwise assessment, CerePET and Biograph mCT estimates across outcome measures were significantly different only in a cluster of left frontal white matter. Conclusion: Our results indicate robust correlation and agreement between semi- and fully quantitative brain glucose metabolism measurements from portable CerePET and standard Biograph mCT scanners. The results obtained with a portable PET scanner in this comparison in humans require follow-up but lend confidence to the feasibility of more flexible and portable brain imaging with PET.


Assuntos
Fluordesoxiglucose F18 , Neocórtex , Humanos , Glucose/metabolismo , Neocórtex/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Neuroimagem
18.
Cells ; 12(23)2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067105

RESUMO

Ischemic conditions cause an increase in the sodium concentration of astrocytes, driving the breakdown of ionic homeostasis and exacerbating cellular damage. Astrocytes express high levels of the electrogenic sodium-bicarbonate cotransporter1 (NBCe1), which couples intracellular Na+ homeostasis to regulation of pH and operates close to its reversal potential under physiological conditions. Here, we analyzed its mode of operation during transient energy deprivation via imaging astrocytic pH, Na+, and ATP in organotypic slice cultures of the mouse neocortex, complemented with patch-clamp and ion-selective microelectrode recordings and computational modeling. We found that a 2 min period of metabolic failure resulted in a transient acidosis accompanied by a Na+ increase in astrocytes. Inhibition of NBCe1 increased the acidosis while decreasing the Na+ load. Similar results were obtained when comparing ion changes in wild-type and Nbce1-deficient mice. Mathematical modeling replicated these findings and further predicted that NBCe1 activation contributes to the loss of cellular ATP under ischemic conditions, a result confirmed experimentally using FRET-based imaging of ATP. Altogether, our data demonstrate that transient energy failure stimulates the inward operation of NBCe1 in astrocytes. This causes a significant amelioration of ischemia-induced astrocytic acidification, albeit at the expense of increased Na+ influx and a decline in cellular ATP.


Assuntos
Acidose , Neocórtex , Camundongos , Animais , Astrócitos/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Camundongos Knockout , Neocórtex/metabolismo , Íons/metabolismo , Sódio/metabolismo , Acidose/metabolismo , Trifosfato de Adenosina/metabolismo
19.
Nature ; 624(7991): 390-402, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092918

RESUMO

Divergence of cis-regulatory elements drives species-specific traits1, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains unclear. Here we investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset and mouse using single-cell multiomics assays, generating gene expression, chromatin accessibility, DNA methylome and chromosomal conformation profiles from a total of over 200,000 cells. From these data, we show evidence that divergence of transcription factor expression corresponds to species-specific epigenome landscapes. We find that conserved and divergent gene regulatory features are reflected in the evolution of the three-dimensional genome. Transposable elements contribute to nearly 80% of the human-specific candidate cis-regulatory elements in cortical cells. Through machine learning, we develop sequence-based predictors of candidate cis-regulatory elements in different species and demonstrate that the genomic regulatory syntax is highly preserved from rodents to primates. Finally, we show that epigenetic conservation combined with sequence similarity helps to uncover functional cis-regulatory elements and enhances our ability to interpret genetic variants contributing to neurological disease and traits.


Assuntos
Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Mamíferos , Neocórtex , Animais , Humanos , Camundongos , Callithrix/genética , Cromatina/genética , Cromatina/metabolismo , Sequência Conservada/genética , Metilação de DNA , Elementos de DNA Transponíveis/genética , Epigenoma , Regulação da Expressão Gênica/genética , Macaca/genética , Mamíferos/genética , Córtex Motor/citologia , Córtex Motor/metabolismo , Multiômica , Neocórtex/citologia , Neocórtex/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Célula Única , Fatores de Transcrição/metabolismo , Variação Genética/genética
20.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139047

RESUMO

Gangliosides are major glycans on vertebrate nerve cells, and their metabolic disruption results in congenital disorders with marked cognitive and motor deficits. The sialyltransferase gene St3gal2 is responsible for terminal sialylation of two prominent brain gangliosides in mammals, GD1a and GT1b. In this study, we analyzed the expression of calcium-binding interneurons in primary sensory (somatic, visual, and auditory) and motor areas of the neocortex, hippocampus, and striatum of St3gal2-null mice as well as St3gal3-null and St3gal2/3-double null. Immunohistochemistry with highly specific primary antibodies for GABA, parvalbumin, calretinin, and calbindin were used for interneuron detection. St3gal2-null mice had decreased expression of all three analyzed types of calcium-binding interneurons in all analyzed regions of the neocortex. These results implicate gangliosides GD1a and GT1b in the process of interneuron migration and maturation.


Assuntos
Cálcio , Neocórtex , Sialiltransferases , beta-Galactosídeo alfa-2,3-Sialiltransferase , Animais , Camundongos , Calbindina 2/metabolismo , Calbindinas/metabolismo , Cálcio/metabolismo , Gangliosídeos/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Mamíferos/metabolismo , Camundongos Knockout , Mutação , Neocórtex/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , beta-Galactosídeo alfa-2,3-Sialiltransferase/genética , beta-Galactosídeo alfa-2,3-Sialiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA